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Abstract We consider Schrödinger operators on a class of periodic quantum graphs with
randomly distributed Kirchhoff coupling constants at all vertices. We obtain necessary con-
ditions for localization on quantum graphs in terms of finite volume criteria for some energy-
dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at
the spectral edges.

Keywords Random operators · Quantum graph · Localization

Introduction

In the present work we study spectral properties for a special type of random interactions
on quantum graphs, the so-called random Kirchhoff model. We are going to show that such
models can be effectively treated using well-established methods for the discrete Anderson
model, in particular, with the help of finite volume fractional moment criteria [2].

The study of random Schrödinger operators on quantum graphs has become especially
active during the last years. In [4] weakly disordered tree graphs were studied; it was shown
that the absolutely continuous spectrum is stable in the weak disorder limit. Random in-
teraction on radial tree-like graphs were studied in [16]; for the random edge length and
random coupling constants it was shown that the corresponding Schrödinger operators ex-
hibit the Anderson localization at all energies. This generalizes previously known results
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on the random necklace graphs [24]. Schrödinger operators with random potentials on the
edges have been studied using the multiscale method in [11], where the presence of the
dense pure point spectrum at the bottom of the spectrum was shown. The authors of [14, 15]
have proved the existence of the integrated density of states and Wegner estimates for pe-
riodic quantum graphs with random interactions (for both random potentials and random
boundary conditions).

Our method consists in a reduction of the spectral problem on quantum graphs to the
study of a family of energy dependent discrete operators with a random potential. To perform
this reduction we use the theory of self-adjoint extensions, or, more precisely, the machinery
of abstract Weyl functions [8]. A reduction of continuous problems to discrete ones within
the localization framework was exploited in numerous papers on Schrödinger operators with
random or quasiperiodic point interactions, see e.g. [6, 9, 12, 17, 19, 20], but, as we will see
below, such a correspondence is particularly explicit and efficient for quantum graphs.

We consider periodic quantum graphs spanned by simple Z
d -lattices with randomly dis-

tributed Kirchhoff coupling constants at all vertices (the precise construction is given in
Sect. 1). The edges can carry additional scalar potentials and the quantum graph is not as-
sumed to be isotropic. Actually, the scheme presented below can be directly extended to
graphs with more complicated combinatorial properties, but we do not do this to avoid tech-
nicalities. The central points of the paper are Theorem 1 giving a condition for a Schrödinger
operator on a quantum graph to have a pure point spectrum in terms of upper spectral mea-
sures, and Proposition 6, where we provide estimates for the spectral measures of quantum
graphs in terms of associated discrete operators. Using the explicitness of the reduction pro-
cedure mentioned above, the proof of Proposition 6 is very largely inspired from the proof
of finite volume localization criteria as given in [2].

These tools reduce the problem to a direct application of finite volume criteria for discrete
Hamiltonians. We note that in the reduced discrete Hamiltonian, the energy parameter for
the original quantum graph enters non linearly. Using these criteria, we establish localization
in the strong disorder regime (Sect. 4) and localization at the band edges (Sect. 5) using the
Lifshitz asymptotics for the density of states.

1 Schrödinger Operator on a Quantum Graph

1.1 Construction of Hamiltonians

For general matters concerning the theory and applications of quantum graphs, we refer
to [13, 25, 26].

We consider a quantum graph whose set of vertices is identified with Z
d . By hj ,

j = 1, . . . , d , we denote the standard basis vectors of Z
d .

Two vertices m, m′ are connected by an oriented edge m → m′ if and only if |m−m′| :=∑d

j=1 |mj − m′
j | = 1 and mj ≤ m′

j for all j = 1, . . . , d ; one says that m is the initial vertex
and m′ is the terminal vertex. Hence, each edge ε has the form m → (m + hj ) with some
m ∈ Z

d and j ∈ {1, . . . , d}; in this case we will write ε = (m, j).
Fix some lj > 0, j ∈ {1, . . . , d}, and replace each edge (m, j) by a copy of the segment

[0, lj ] in such a way that 0 is identified with m and lj is identified with m + hj . In this
way we arrive at a certain topological set carrying a natural metric structure. We will pa-
rameterize the points of the edges by the distance from the initial vertex. Point x lying on
the edge (m, j) on the distance t ∈ [0, lj ) from m will be denoted as x = (m, j, t). There
is an ambiguity concerning the coordinates of the vertices, but this does not influence the
constructions below.
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The above graph can be embedded into R
d , if one identifies Z

d � m ∼ p(m) :=∑d

j=1 mj ljhj ∈ R
d , (m, k) ∼ [p(m),p(m) + lkhk], but this will not be used.

The quantum state space of the system is

H :=
⊕

m∈Zd

⊕

j∈{1,...,d}
Hm,j , where Hm,j = L2([0, lj ]),

and the elements of H will be denoted by f = (fm,j ), fm,j ∈ Hm,j , m ∈ Z
d , j = 1, . . . , d ,

or f = (fε), fε ∈ Hε , ε ∈ Z
d × {1, . . . , d}. In what follows, we denote by Pε = Pm,j the

orthogonal projection from H to Hε = Hm,j , ε = (m, j). We say that a function f = (fm,j )

is concentrated on an edge (m, j) if Pm,jf = f , i.e. if all components of f but fm,j vanish.
Let us describe the Schrödinger operator acting in H. Fix real-valued potentials

Uj ∈ L2([0, lj ]), j = 1, . . . , d , and real constants α(m), m ∈ Z
d . Set A := diag(α(m));

this is a self-adjoint operator in l2(Zd). Denote by HA the operator acting as

(fm,j ) �→
((

− d2

dt2
+ Uj

)

fm,j

)

(1a)

on functions (fm,j ) ∈⊕m,j H 2([0, lj ]) satisfying the following boundary conditions:

fm,j (0) = fm−hk,k(lk) =: f (m), j, k = 1, . . . , d (1b)

(which means the continuity at all vertices) and

f ′(m) = α(m)f (m), m ∈ Z
d , (1c)

where

f ′(m) :=
d∑

j=1

f ′
m,j (0) −

d∑

j=1

f ′
m−hj ,j (lj ). (2)

The constants α(m) are usually referred to as Kirchhoff coupling constants. The boundary
conditions corresponding to zero Kirchhoff coupling constants are usually called the Kirch-
hoff boundary conditions. Non-zero Kirchhoff coupling constants are usually interpreted as
measuring the impurities at the vertices (zero coupling constants correspond to the ideal
coupling). Later we will assume that α(m) are independent identically distributed random
variables, but here we treat first the deterministic case. For convenience, for α ∈ R we denote
by Hα the above operator HA with the diagonal A, A = α id.

Our aim now is to provide a reduction of the spectral problem for HA to a family of
discrete spectral problems. We will do this using the machinery of self-adjoint extensions; a
self-contained presentation of this technique in the abstract setting can be found e.g. in the
recent preprint [8].

Denote by S the operator acting as (1a) on the functions f satisfying only the boundary
conditions (1b). On the domain of S, one can define linear maps

f �→ �f := (
f (m)

)
m∈Zd ∈ l2(Zd), f �→ �′f := (

f ′(m)
)
m∈Zd ∈ l2(Zd),

where f ′ is defined in (2). By the Sobolev embedding theorems, the maps �,�′ are well-
defined, and the map (�,�′) : domS → l2(Zd) × l2(Zd) is onto. Moreover, by a simple
computation, for any f,g in domS, one has

〈f,Sg〉 − 〈Sf,g〉 = 〈�f,�′g〉 − 〈�′f,�g〉
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(see e.g. Proposition 1 in [29]). In the abstract language, (Zd ,�,�′) form a boundary triple
for S. This permits to write a useful formula for the resolvent of HA, which will play a
crucial role below.

First, denote by H 0 the restriction of S to ker�. Clearly, H 0 acts as (1a) on func-
tions (fm,j ) with fm,j ∈ H 2([0, lj ]) satisfying the Dirichlet boundary conditions, fm,j (0) =
fm,j (lj ) = 0 for all m,j , and the spectrum of H 0 is just the union of the Dirichlet spectra of

the operators − d2

dt2 + Uj on the segments [0, lj ].
Denote by ϕj and ϑj the solutions to −y ′′ + Ujy = Ey satisfying ϕ(0;E) = ϑ ′(0;E)

= 0 and ϕ′(0;E) = ϑ(0;E) = 1. For short, we denote φj (t;E) := ϕj (lj ;E)ϑj (t;E) −
ϑj (lj ;E)ϕj (t;E). Clearly, φj is the solution to the above differential equation satisfying
φj (lj ;E) = 0 and −φ′

j (lj ;E) = 1.
For E outside specH 0, consider the operator γ (E) : l2(Zd) → H defined as follows: for

ξ ∈ l2(Zd), γ (E)ξ is the unique solution to (S − E)f = 0 with �f = ξ . For each E, γ (E)

is a linear topological isomorphism between l2(Zd) and ker(S − E). Clearly, in terms of the
functions φj ,ϕj ,ϑj introduced above, one has

(
γ (E)ξ

)
m,j

(t) = 1

ϕj (lj ;E)

(
ξ(m + hj )ϕj (t;E) + ξ(m)φj (t;E)

)
. (3)

Furthermore, for E �∈ σ(H 0), define the operator M(E) : l2(Zd) → l2(Zd) by M(E) :=
�′γ (E). In our case,

M(E)ξ(m) =
d∑

j=1

1

ϕj (lj ;E)

(
ξ(m−hj )+ ξ(m+hj )

)−
(

d∑

j=1

ϑj (lj ;E) + ϕ′
j (lj ;E)

ϕj (lj ;E)

)

ξ(m).

We set for clarity

a(E) :=
d∑

j=1

ηj (E)

ϕj (lj ;E)
, bj (E) := 1

ϕj (lj ;E)
, ηj (E) := ϑj (lj ;E) + ϕ′

j (lj ;E).

Then

M(E)ξ(m) =
d∑

j=1

bj (E)
(
ξ(m − hj ) + ξ(m + hj )

)− a(E)ξ(m). (4)

The maps E �→ γ (E) and E �→ M(E) enjoy a number of important properties. In particular,
γ and M depend analytically on their argument (outside specH 0), and for any admissible
real E one has

dM(E)

dE
= γ ∗(E)γ (E), (5)

and for any non-real E there is cE > 0 such that

M(E)

E
≥ cE. (6)

The resolvents of H 0 and HA are related by the Krein resolvent formula,

(HA − E)−1 = (H 0 − E)−1 − γ (E)
(
M(E) − A

)−1
γ ∗(Ē), E /∈ specH 0 ∪ specHA. (7)
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Moreover, the set specHA \ specH 0 coincides with {E /∈ specH 0 : 0 ∈ spec(M(E) − A)},
and the same correspondence holds for the eigenvalues with γ (E) being an isomorphism of
the corresponding eigenspaces.

We note that for special quantum graphs one can perform a complete reduction of the
spectral problem to the spectral problem for the discrete Laplacian on the underlying com-
binatorial graph [7, 8, 30]. In general, the spectrum is rather complicated and depends on
various geometric and arithmetic parameters, see e.g. [10].

Equation (7) shows that (HA − E)−1 is an integral operator whose kernel (the Green
function) GA has the following form:

GA

(
(m, j, t), (m′, j ′, t ′)

)

= δmm′δjj ′Gj(t, t
′;E) − 1

ϕj (t;E)ϕj ′(t ′;E)

[(
M(E) − A

)−1
(m,m′)φj (t;E)φj ′(t ′;E)

+ (
M(E) − A

)−1
(m + hj ,m

′)ϕj (t;E)φj ′(t ′;E)

+ (
M(E) − A

)−1
(m,m′ + hj ′)φj (t;E)ϕj ′(t ′;E)

+ (
M(E) − A

)−1
(m + hj ,m

′ + hj ′)ϕj (t;E)ϕj ′(t ′;E)
]
, (8)

where Gj is the Green function for −d2/dx2 + Uj on L2([0, lj ]) with Dirichlet boundary
conditions, i.e.

Gj(t, t
′;E) =

⎧
⎨

⎩

ϕj (t;E)φ(t ′;E)

Wj (E)
, t < t ′,

ϕj (t ′;E)φ(t;E)

Wj (E)
, t > t ′,

Wj (E) := ϕj (t;E)φ′
j (t;E) − ϕ′

j (t;E)φj (t;E).

(9)

1.2 Random Hamiltonians

On (,P) a probability space, let (αω(m))m∈Zd be a family of independent identically dis-
tributed (i.i.d.) random variables whose common distribution has a bounded density ρ with
support [α−, α+].

By a random Hamiltonian acting on the quantum graph, we mean the family of operators
given by (1) corresponding to the parameterizing operator Aω := {λαω(m)} of Kirchhoff
coupling constants at the vertices, where αω(m) are described above. This family of Hamil-
tonians will be denoted by Hλ,ω or HA,ω.

For the moment we can set without loss of generality λ = 1 and denote the Hamiltonians
simply by Hω .

The shifts τm, defined by (τmω)m′ = ωm+m′ , m,m′ ∈ Z
d , act as a measure preserving

ergodic family on . For any τm, there exists a unitary map Um on H, (Umf )m′,j ′ = fm+m′,j ′ ,
m,m′ ∈ Z

d , j ′ ∈ {1, . . . , d}, with Hτmω = U ∗
mHωUm, which implies the following standard

result from the theory of random operators, the existence of an almost sure spectrum and of
almost sure spectral components (see e.g. [31]), i.e. the existence of closed subsets �• ⊂ R

and a subset ′ ⊂  with P(′) = 1 such that spec• Hω = �•, • ∈ {pp, ac, sc}, for any
ω ∈ ′. Let � = �pp ∪ �ac ∪ �sc be the almost sure spectrum of Hω .

By (7) and the discussion thereafter, for any E /∈ specH 0 one has the equivalence E ∈
specHω if and only if 0 ∈ spec(M(E) − Aω). At the same time, M(E) − Aω is a usual
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metrically transitive operator in l2(Zd) and hence possesses an almost sure spectrum �M(E)

which satisfies (see [31])

�M(E) = specM(E) − [α−, α+]

=
⎡

⎣−2
d∑

j=1

∣
∣bj (E)

∣
∣− a(E) − α+,2

d∑

j=1

∣
∣bj (E)

∣
∣− a(E) − α−

⎤

⎦ . (10)

Hence, the characteristic equation for E /∈ specH 0 to be in the almost sure spectrum of Hω

reads
(

2
d∑

j=1

∣
∣bj (E)

∣
∣− a(E) − α−

)

·
(

2
d∑

j=1

∣
∣bj (E)

∣
∣+ a(E) + α+

)

≥ 0. (11)

So, the spectrum of Hω outside the Dirichlet eigenvalues is a union of bands.
Let us turn to the dependence of Hλ,ω on λ. The characteristic equation (11) for the

spectrum becomes

(

2
d∑

j=1

∣
∣bj (E)

∣
∣− a(E) − λα−

)

·
(

2
d∑

j=1

∣
∣bj (E)

∣
∣+ a(E) + λα+

)

≥ 0. (12)

Let us describe the behavior of the almost sure spectrum as λ → +∞. Recall the well-known
asymptotics [28]:

ηj (E) ∼ 2 cosh lj
√−E, ϕj (lj ,E) ∼ sinh lj

√−E√−E
, E → −∞,

(13)

ηj (E) ∼ 2 cos lj
√

E, ϕj (lj ,E) ∼ sin lj
√

E√
E

, E → +∞.

In particular, bj (E) = O(e−α
√−E), α > 0, and a(E) ∼ 2d

√−E for E → −∞.
If α− < 0 < α+, then condition (12) can be satisfied for any E if λ is chosen sufficiently

large, i.e. the spectrum tends to cover the whole real axis. The edges of the spectrum are
situated in the domains where the expressions 2

∑d

j=1 |bj (E)| ± a(E) are of order λ; so,
these edges lie in O(λ−1)-neighborhoods of the Dirichlet eigenvalues and close to −∞.

If 0 ∈ [α−, α+], then (12) will be satisfied for any λ if

(

2
d∑

j=1

∣
∣bj (E)

∣
∣− a(E)

)

·
(

2
d∑

j=1

∣
∣bj (E)

∣
∣+ a(E)

)

≥ 0,

i.e. the spectrum contains a part which does not depend on λ; actually, this part is nothing
but the spectrum of the Hamiltonian H0 corresponding to the zero coupling constants at all
vertices i.e. αω(m) = 0, ∀m.

If α− and α+ are both positive or both negative, for (12) to be satisfied, the expressions
2
∑d

j=1 |bj (E)| ± a(E) must be of the same order as λ, i.e. must be large. Therefore, for
λ → +∞ the condition (11) can be satisfied only in the following cases:

• ϕ(lj ,E) ∼ λ−1 for some j ,
• α+ < 0 and

√−E ∼ λ.
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In other words, for λ → +∞ the spectrum on the positive half-line concentrates in O(λ−1)

neighborhoods of the Dirichlet eigenvalues. For α+ < 0 there is a band going to infinity on
the negative half-line.

Finally, if α− < 0 then, there is some spectrum on the negative half-axis at the energies
of order

√−E ∼ −λ.

2 Localization Conditions for Quantum Graphs

In this section we again set λ = 1 and study the operator Hω . The following spectral charac-
teristics of Hω will be of crucial importance for us.

Let f,g ∈ H. Let μf,g denote the spectral measure for HA associated with HA and |μf,g|
denote its absolute value. For any measurable set F and two edges (m, j), (m′, j ′) we set

μ(m,j),(m′,j ′)(F ) := sup
f =Pm,j f,

g=Pm′,j ′ g
‖f ‖=‖g‖=1

|μf,g|(F )

and call μ(m,j),(m′,j ′) the upper spectral measure associated with the edges (m, j) and
(m′, j ′) and HA. For the random Hamiltonian Hω, the corresponding quantities get an addi-
tional subindex ω. Recall that for μ a complex valued regular Borel measure and F a Borel
set, one defines

|μ|(F ) = sup
f ∈C0(R), |f |∞≤1

∣
∣
∣
∣

∫

F

f (E)dμ(E)

∣
∣
∣
∣ . (14)

We provide localization criteria for HA in terms of the upper spectral measures; this extends
to the quantum graph case the localization criteria known for discrete Hamiltonians, cf.
Theorem IV.4 and Corollary IV.5 in [27].

Theorem 1 Let F ⊂ R. Assume that, for any (m, j), one has

∑

m′∈Zd

d∑

j ′=1

μ(m,j),(m′,j ′)(F ) < ∞, (15)

then HA has only pure point spectrum in F .

Proof We use the following result from [5] (p. 642):

Proposition 2 Let H be a self-adjoint operator in a Hilbert space H and Fr be a family
of orthogonal projections such that s-limr→+∞ Fr = 1. Suppose that there exists a family
{Sn} of linear operators, such that each Sn is bounded, defined everywhere, and commutes
with H , and the strong limit S := s-limn→∞ Sn exists and ranS = H. Assume additionally
that FrSn is compact for any r and n. Then, the invariant subspace Hpp of H corresponding
to the pure point spectrum admits the following description:

Hpp =
{
f ∈ H : lim

r→∞ sup
t∈R

‖(1 − Fr)e
itH f ‖ = 0

}
.

And the technical result



658 F. Klopp, K. Pankrashkin

Proposition 3 Let � be a subset of Z
d . Denote by P� the orthogonal projection from H

to the span of the functions (fm,j ) with fm,j = 0 for m /∈ �. For any finite � and any
E /∈ specHA, the operator T := P�(HA − E)−1 is Hilbert-Schmidt, hence compact.

That we prove in Appendix A.
Denote by PF denote the spectral projection onto F corresponding to HA. It is sufficient

to show that PF f belongs to the invariant space of HA associated with the point spectrum
for any f ∈ H. Clearly, it suffices to consider only functions f concentrated on a single
edge.

Let us use Proposition 2. Take S = Sn = (HA − i)−1. As Fr we take the orthogonal pro-
jections from H to the functions (fm,j ) with fm,j = 0 for |m| > r . Clearly, S is bounded,
commutes with HA, ranS = domHA is dense in H, FrS is compact for any r due to Propo-
sition 3, and Fr strongly converge to the identity operator. Hence, the assumptions of Propo-
sition 2 are satisfied.

Take any f with f = Pm,jf . Clearly, in our setting,

sup
t∈R

∥
∥(1 − Fr)e

−itHAPF f )
∥
∥2 = sup

t∈R

∑

|m′ |>r

d∑

j ′=1

∥
∥
(
e−itHAPF f

)
m′,j ′

∥
∥2

= sup
t∈R

∑

|m′ |>r

d∑

j ′=1

〈
e−itHAPF f,Pm′,j ′e−itHAPF f

〉

≤
∑

|m′ |>r

d∑

j ′=1

sup
t,s∈R

∣
∣
〈
e−isHAPF f,Pm′,j ′e−itHAPF f

〉∣
∣.

Due to the definition of the absolute value of a measure one has

sup
s∈R

∣
∣
〈
e−isHAPF f,Pm′,j ′e−itHAPF f

〉∣
∣≤ ∣

∣μf,Pm′,j ′ e−itHAPF f
∣
∣(F ).

Using the definition of μ(m,j),(m′,j ′)(F ) one obtains

sup
t∈R

∣
∣μf,Pm′,j ′ e−itHA PF f

∣
∣(F ) ≤ μ(m,j),(m′,j ′)(F )‖PF f ‖‖f ‖ ≤ μ(m,j),(m′,j ′)(F )‖f ‖2.

Finally, we obtain

sup
t∈R

∥
∥(1 − Fr)e

−itHAPF f )
∥
∥2 ≤ ‖f ‖2

∑

|m′|>r

d∑

j ′=1

μ(m,j),(m′,j ′)(F ),

and by (15), limr→+∞ supt∈R
‖(1 − Fr)e

−itHAPF f ‖2 = 0. �

Theorem 1 admits a direct application to the random Hamiltonians Hω .

Corollary 4 Let F ⊂ R. Assume that, for any edge (m, j), one has

E

(∑

m′∈Zd

d∑

j ′=1

μ(m,j),(m′,j ′)
ω (F )

)

< ∞, (16)

then Hω has only pure point spectrum in F almost surely.
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Proof Equation (16) says, in particular, that for any (m, j) there exists m,j ⊂  with
P(m,j ) = 1 such that, for ω ∈ m,j ,

∑
m′∈Zd

∑d

j ′=1 μ(m,j),(m′,j ′)
ω (F ) < ∞.

Denote ′ :=⋂
m,j m,j ; as the set of all (m, j) is countable, P(′) = 1. Clearly,

∑

m′∈Zd

d∑

j ′=1

μ(m,j),(m′,j ′)
ω (F ) < ∞ for all (m, j) and all ω ∈ ′,

and the spectrum of Hω in F is pure point for any ω ∈ ′ by Theorem 1. �

In the next result, we show that assumption (16) is a consequence of a finite volume
criteria à la [2] on the discrete Hamiltonians defined in Sect. 1. The finite volume criteria is
expressed in terms of finite volume approximations of our operators that we first define.

Let � be a subset of Z
d . Denote by H�

A the operator acting by the same rule (1a) on func-
tions f satisfying the boundary conditions f ′(m) = α(m)f (m) for m ∈ � and the Dirichlet
boundary conditions f (m) = 0 for m /∈ �. In other words, the functions from the domain
H�

A satisfy the same boundary conditions as for HA at the vertices lying in � and those as
for H 0 at the vertices outside �. One can relate the operators of H�

A and H 0 by a formula
similar to (7) using e.g. the construction of [32].

Namely, consider l2(�) as a subset of l2(Zd) and denote by �� the orthogonal pro-
jection from l2(Zd) to l2(�). Denote also M�(E) := P�M(E)��, A� := ��A��; these
two operators are to be considered as acting in l2(�), and γ�(E) = γ (E)��, then, for
E /∈ specH 0 ∪ specH�

A , the following resolvent formula holds:

(H�
A − E)−1 = (H 0 − E)−1 − γ�(E)

(
M�(E) − A�

)−1
γ ∗

�(Ē). (17)

As previously, for any E /∈ specH 0 one has ker(H�
A − E) = γ�(E)ker(M�(E) − A�).

In Appendix A, we prove the following auxiliary result

Proposition 5 Let �N := {m ∈ Z
d : maxj |mj | ≤ N}, N ∈ N. The operators H

�N

A converge
to HA in the strong resolvent sense as N → ∞.

That will be used in the proof of our localization criterion.

Proposition 6 Let F ⊂ R be a segment containing no Dirichlet eigenvalues. Assume that
there exists A,a > 0 and s ∈ (0,1) such that

E
∣
∣
(
M�(E) − A�,ω

)−1
(m,m′)

∣
∣s ≤ Ae−a|m−m′| (18)

for all finite � ⊂ Z
d and all E ∈ F . Then, there exist B,c > 0 such that for any two edges

(m, j) and (m′, j ′) one has

E
(
μ(m,j),(m′,j ′)

ω (F )
)≤ Be−c|m−m′|. (19)

Remark 7 By Theorem 1, the result of Proposition 6 clearly implies that, under the assump-
tions of Proposition 6, the spectrum is almost surely pure point in F . By the results of [2], in
particular, Theorem 4.1 therein, the assumption of Proposition 6 also implies that, for E ∈ F ,
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the spectrum of M(E) − Aω is localized in an open interval containing 0. Hence, using the
remark following Krein’s resolvent formula, (7), for E in the spectrum of Hω and not an
eigenvalue of H0 (i.e. not a Dirichlet eigenvalue), 0 is an eigenvalue for M(E) − Aω . It is
associated to an eigenfunction, say ξ , that is exponentially localized in Z

d . The correspond-
ing eigenfunction for Hω at energy E, say, ϕ is then given by ϕ = γ (E)ξ . By (3), ϕ is also
exponentially localized in the sense that there exists C > 0 such that

sup
1≤j≤d

‖ϕ‖Hm,j
≤ Ce−|m|/C.

Moreover, as in Appendix A of [2], by (14), Proposition 6 implies dynamical localization
bounds for the operator HA in the following sense

E

(

sup
f =Pm,j f,

g=Pm′,j ′ g
‖f ‖=‖g‖=1

|〈f, eitHω 1F (Hω)g〉|
)

≤ Ce−|m−m′|/C. (20)

Proof of Proposition 6 In view of Proposition 5, H
�n

A,ω converges to HA,ω in the strong

resolvent sense for a suitable choice of finite �n ⊂ Z
d and any ω. This implies the weak

convergence μ
f,g

�,ω → μf,g
ω for any f,g,ω. Consequently, by the Fatou lemma, for any F

one has E(μ(m,j),(m′,j ′)
ω (F )) ≤ lim inf E(μ

(m,j),(m′,j ′)
�,ω (F )). In other words, it is sufficient to

show the existence of positive B and c such that for any (m, j) and (m′, j ′) the estimate
E(μ

(m,j),(m′,j ′)
�,ω (F )) ≤ Be−c|m−m′| holds for sufficiently large �. In proving this estimate, we

follow essentially the steps of [2, Theorem A.1] or [1, Lemma 3.1].
Pick two edges (m, j) and (m′, j ′) and consider � ⊂ Z

d containing m and m′ and all
vertices n with |n − m′| ≤ 2.

Denote Âω := Aω + (v̂ − α(m′))�m′ , where �m′ is the projection onto δm′ and v̂ is
distributed identically to α(m′), and consider the modified Hamiltonian HÂ,ω . Note that
under our assumptions E(|v̂|δ) < ∞ for any δ > 0. For almost every v̂, if 0 is an eigenvalue
of M�(E) − A�,ω , then M�(E) − Â�,ω is invertible. Consider also the operators Ãω :=
Aω + (ṽ − α(m′ + hj ′))�m′+hj ′ with ṽ distributed identically to α(m′ + hj ′), to which the
previous observations apply as well.

We note that the spectrum of H�
A,ω outside the Dirichlet eigenvalues is discrete. Almost

surely, each eigenvalue of M�(E) − A� is simple. One has

μ
f,g

�,ω(F ) =
∑

Ek∈specH�
ω ∩F

〈f,γ�(Ek)ξk〉 〈γ�(Ek)ξk, g〉
‖γ�(Ek)ξk‖2

, (21)

where Ek and ξk satisfy (M(Ek) − A�,ω)ξk = 0, ξk �= 0.
Let E /∈ specH 0. In the space Hm′,j ′ = L2[0, lj ′ ] consider the subspace L(E) spanned

by the linearly independent functions ϕj ′(E) := ϕj ′(·,E) and φj ′(E) := φj ′(·,E). Denote
by P (E) the orthogonal projection from Hm′,j ′ to L(E). Any function h ∈ L(E) can be
uniquely represented in the form h = ĥ + h̃ with ĥ, h̃ ∈ L(E), ĥ ⊥ ϕj ′(E), h̃ ⊥ φj ′(E).
Denote the corresponding projections L(E) � h �→ ĥ ∈ L(E) and L(E) � h �→ h̃ ∈ L(E)

by P̂ (E) and P̃ (E), respectively. In view of the analytic dependence of ϕj ′(E) and φj ′(E),
the norms of the operators P̂ (E)P (E) and P̃ (E)P (E) are uniformly bounded,

‖P̂ (E)P (E)‖ + ‖P̃ (E)P (E)‖ ≤ p, p > 0, E ∈ F. (22)
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From now on we assume that f = Pm,jf and g = Pm′,j ′g. Having in mind the explicit
expression for γ (E) (see (3)), we compute

[γ ∗
�(E)g](m) =

d∑

s=1

1

ϕs(ls;E)

(〈ϕs(E), gm−hs ,s〉 + 〈φj (E), gm,s〉
)
, m ∈ �, (23)

and one concludes that, for any E ∈ F , one has γ ∗(E)g = γ ∗(E)P̂ (E)P (E)g + γ ∗(E)

P̃ (E)P (E)g, which permits us to rewrite (21) in the form

μ
f,g

�,ω(F ) =
∑

Ek∈specH�
ω ∩F

〈f,γ�(Ek)ξk〉 〈γ�(Ek)ξk, P̂ (Ek)P (Ek)g〉
‖γ�(Ek)ξk‖2

+
∑

Ek∈specH�
ω ∩F

〈f,γ�(Ek)ξk〉 〈γ�(Ek)ξk, P̃ (Ek)P (Ek)g〉
‖γ�(Ek)ξk‖2

. (24)

Denote

ϕ̂E := (M�(E) − A�,ω)−1δm′

〈δm′ , (M�(E) − A�,ω)−1δm′ 〉 = (M�(E) − Â�,ω)−1δm′

〈δm′ , (M�(E) − Â�,ω)−1δm′ 〉 .

Assume that ξ is an eigenvector of M�(E) − A�,ω corresponding to the eigenvalue 0.
Then 0 = (M�(E) − A�,ω)ξ = (M�(E) − Â�,ω)ξ + (v̂ − α(m′))�m′ξ . Almost surely the
matrix M�(E) − Â�,ω is invertible and �m′ξ �= 0 (otherwise ξ would be an eigenvector of
M�(E) − Â�,ω). Hence, ξ = (α(m′) − v̂)〈δm′ , ξ 〉(M�(E) − Â�,ω)−1δm′ . This means, that
ξ = Cϕ̂E with a suitable constant C.

By a direct calculation, (M�(E) − A�,ω)ϕ̂E = (α(m′) − v̂ − �̂(E))δm′ , where

�̂(E) = − 1

〈δm′ , (M�(E) − Â�,ω)−1δm′ 〉 .

Hence, the spectrum of H
�n

A,ω in F is determined by the condition α(m′) − ṽ = �̂(E), and
ϕ̂E are the corresponding (non-normalized) eigenfunctions. Clearly, one has always

〈δm′ , ϕ̂E〉 = 1. (25)

Using these observations one can write almost surely

〈f,γ�(Ek)ξk〉 〈γ�(Ek)ξk, g〉
‖γ�(Ek)ξk‖2

= 〈f,γ�(Ek)ϕ̂Ek
〉〈γ�(Ek)ϕ̂Ek

, g〉
‖γ�(Ek)ϕ̂Ek

‖2
. (26)

Exactly in the same way one shows that the spectrum can be determined from the condition
α(m′ + hj ′) − ṽ = �̃(E) with

�̃(E) = − 1

〈δm′+hj ′ , (M�(E) − Ã�,ω)−1δm′+hj ′ 〉
and that

〈f,γ�(Ek)ξk〉 〈γ�(Ek)ξk, g〉
‖γ�(Ek)ξk‖2

= 〈f,γ�(Ek)ϕ̃Ek
〉〈γ�(Ek)ϕ̃Ek

, g〉
‖γ�(Ek)ϕ̃Ek

‖2
, (27)
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where

ϕ̃E := (M�(E) − A�,ω)−1δm′+hj ′

〈δm′+hj ′ , (M�(E) − A�,ω)−1δm′+hj ′ 〉 = (M�(E) − Ã�,ω)−1δm′+hj ′

〈δm′ , (M�(E) − Ã�,ω)−1δm′+hj ′ 〉
.

and obviously

〈δm′+hj ′ , ϕ̃E〉 = 1. (28)

Combining the representations (21) and (24) for the spectral measures with the identities
(26) and (27) one obtain the following:

μ
f,g

�,ω(dE) = 〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, g〉
‖γ�(E)ϕ̂E‖2

·
(∑

k

δ(E − Ek)

)

dE

= 〈f,γ�(E)ϕ̃E〉〈γ�(E)ϕ̃E, g〉
‖γ�(E)ϕ̃E‖2

·
(∑

k

δ(E − Ek)

)

dE

= 〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, P̂ (E)P (E)g〉
‖γ�(E)ϕ̂E‖2

·
(∑

k

δ(E − Ek)

)

dE

+ 〈f,γ�(E)ϕ̃E〉〈γ�(E)ϕ̃E, P̃ (E)P (E)g〉
‖γ�(E)ϕ̃E‖2

·
(∑

k

δ(E − Ek)

)

dE. (29)

Now, note that
∑

δ(E − Ek) = −δ(α(m′) − v̂ − �̂(E))�̂′(E) = −δ(α(m′ + hj ′) − ṽ − �̃(E))�̃′(E)

and that, using (4) and (5), one obtains,

�̂′(E) = −�̂2(E)〈δm′ , (M�(E)− Â�,ω)−1M ′
�(E)(M�(E)− Â�,ω)−1δm′ 〉 = −‖γ�(E)ϕ̂E‖2.

and

�̃′(E) = −�̃2(E)〈δm′+hj ′ , (M�(E) − Ã�,ω)−1M ′
�(E)(M�(E) − Ã�,ω)−1δm′+hj ′ 〉

= −‖γ�(E)ϕ̃E‖2.

This allows one to rewrite (29) as

μ
f,g

�,ω(dE) = δ(α(m′) − v̂ − �̂(E))〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, g〉dE

= δ(α(m′ + hj ′) − ṽ − �̃(E))〈f,γ�(E)ϕ̃E〉〈γ�(E)ϕ̃E, g〉dE

= δ(α(m′) − v̂ − �̂(E))〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, P̂ (E)P (E)g〉dE

+ δ(α(m′ + hj ′) − ṽ − �̃(E))〈f,γ�(E)ϕ̃E〉〈γ�(E)ϕ̃E, P̃ (E)P (E)g〉dE.

(30)

According to the general properties of spectral measures, one always has μ
f,g

�,ω(dE) =
�f,g(E)μ

f,f

�,ω(dE), where �f,g is a measurable function satisfying
∫

R

|�f,g(E)|2μf,f

�,ω(dE) ≤ ‖g‖2‖f ‖2.
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In our case, the first two equalities in (30) imply

∫

R

∣
∣〈γ�(E)ϕ̂E,h〉∣∣2δ(α(m′) − v̂ − �̂(E)

)
dE ≤ ‖h‖2 (31)

and

∫

R

∣
∣〈γ�(E)ϕ̃E,h〉∣∣2δ(α(m′ + hj ′) − ṽ − �̃(E)

)
dE ≤ ‖h‖2 (32)

for any h.
Now we use the third representation in (30) for the spectral measure to estimate the upper

spectral measure for the edges (m, j) and (m′, j ′). Clearly,

|μf,g

�,ω|(F ) =
∫

F

∣
∣〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, P̂ (E)P (E)g〉∣∣δ(α(m′) − v̂ − �̂(E))dE

+
∫

F

∣
∣〈f,γ�(E)ϕ̃E〉〈γ�(E)ϕ̃E, P̃ (E)P (E)g〉∣∣δ(α(m′ + hj ′) − ṽ − �̃(E))dE.

The construction of the operators P̂ (E)P (E) and P̂ (E)P (E) implies that �m′γ ∗(E)�

P̂ (E)P (E) = γ ∗(E)P̂ (E)P (E) and �m′+hj ′ γ
∗
�(E)P̃ (E)P (E) = γ ∗(E)P̃ (E)P (E). To-

gether with the normalization conditions (25) and (28), for any g, this implies

∣
∣
〈
γ�(E)ϕ̂E, P̂ (E)P (E)g

〉∣
∣= ∥

∥γ ∗
�(E)P̂ (E)P (E)g

∥
∥,

∣
∣
〈
γ�(E)ϕ̃E, P̃ (E)P (E)g

〉∣
∣= ∥

∥γ ∗
�(E)P̃ (E)P (E)g

∥
∥.

(33)

Now, we estimate

E

(
sup

‖f ‖=‖g‖=1
|μf,g

�,ω|(F )
)

≤ E

(

sup
‖f ‖=‖g‖=1

∫

F

∣
∣〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, P̂ (E)P (E)g〉∣∣δ(α(m′) − v̂ − �̂(E))dE

)

+ E

(

sup
‖f ‖=‖g‖=1

∫

F

∣
∣〈f,γ�(E)ϕ̃E〉〈γ�(E)ϕ̃E, P̃ (E)P (E)g〉∣∣

× δ(α(m′ + hj ′) − ṽ − �̃(E))dE

)

. (34)

Using (22) and (33), one gets

E

(

sup
‖f ‖=‖g‖=1

∫

F

∣
∣〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, P̂ (E)P (E)g〉∣∣δ(α(m′) − v̂ − �̂(E))dE

)

≤ p GE

(

sup
‖f ‖=1

∫

F

∣
∣〈f,γ�(E)ϕ̂E〉∣∣ δ(α(m′) − v̂ − �̂(E))dE

)

, (35)
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where G := supE∈F ‖γ ∗
�(E)‖ < ∞. Using the Hölder inequality and (31), one obtains

E

(

sup
‖f ‖=1

∫

F

∣
∣〈f,γ�(E)ϕ̂E〉∣∣δ(α(m′) − v̂ − �̂(E)

)
dE

)

≤
[

E

(

|α(m′) − v̂|α sup
‖f ‖=1

∫

F

∣
∣〈f,γ�(E)(M�(E) − Â�)−1δm′ 〉∣∣α

× δ
(
α(m′) − v̂ − �̂(E)

)
dE

)]1/(2−α)

for any α ∈ (0,1). Using again the Hölder inequality we get

E

(

|α(m′) − v̂|α sup
‖f ‖=1

∫

F

∣
∣〈f,γ�(E)(M�(E) − Â�)−1δm′ 〉∣∣αδ(α(m′) − v̂ − �̂(E)

)
dE

)

≤ 2E(|v̂|α)α/δ

[

E

(

sup
‖f ‖=1

∫

F

∣
∣〈f,γ�(E)(M�(E) − Â�)−1δm′ 〉∣∣s

× δ
(
α(m′) − v̂ − �̂(E)

)
dE

)]α/s

with α/s + α/δ = 1. Using (18), we estimate,

E

(

sup
‖f ‖=1

∫

F

∣
∣〈f,γ�(E)(M�(E) − Â�)−1δm′ 〉∣∣sδ(α(m′) − v̂ − �̂(E)

)
dE

)

≤
∫

F

E

(
sup

‖f ‖=1

∣
∣〈f,γ�(E)(M�(E) − Â�)−1δm′ 〉∣∣s

)
ρ
(
v̂ + �̂(E)

)
dE

≤ R|F | sup
E∈F

E
(∥
∥
(
γ�(E)(M�(E) − Â�)−1δm′

)
m,j

∥
∥s)

≤ R|F |C sup
E∈F

E
(∣
∣(M�(E) − Â�)−1(m,m′)

∣
∣s
)

+ R|F |C sup
E∈F

E
(∣
∣(M�(E) − Â�)−1(m + hj ,m

′)
∣
∣s
)

≤ R|F |C(Ae−a|m−m′| + Ae−a|m+hj −m′|)≤ AR|F |C(1 + ea)e−a|m−m′|,

where R = supρ and

C = max

(

sup
E∈F

∥
∥
∥

ϕj (·,E)

ϕj (lj ,E)

∥
∥
∥

s

, sup
E∈F

∥
∥
∥

φj (·,E)

ϕj (lj ,E)

∥
∥
∥

s
)

.

Finally, as follows from (35), one has

E

(

sup
‖f ‖=‖g‖=1

∫

F

∣
∣〈f,γ�(E)ϕ̂E〉〈γ�(E)ϕ̂E, P̂ (E)P (E)g〉∣∣δ(α(m′) − v̂ − �̂(E))dE

)

≤ B̂e−ĉ|m−m′| (36)

with some B̂, ĉ > 0.
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One can estimate the second term on the right-hand side of (34) in exactly the same way.
Using (22) and (33) and the inequality (32), after similar steps, one gets

E

(

sup
‖f ‖=1

(∫

F

∣
∣〈f,γ�(E)(M�(E) − Ã�)−1δm′+hj ′ 〉

∣
∣sδ
(
α(m′ + hj ′) − ṽ − �̃(E)

)
dE

))

≤
∫

F

E

(

sup
‖f ‖=1

∣
∣〈f,γ�(E)(M�(E) − Ã�)−1δm′+hj ′ 〉

∣
∣s
)

ρ
(
ṽ + �̃(E)

)
dE

≤ R|F | sup
E∈F

E
(∥
∥
(
γ�(E)(M�(E) − Ã�)−1δm′+hj ′

)
m,j

∥
∥s)

≤ R|F |C sup
E∈F

E
(∣
∣(M�(E) − Ã�)−1(m,m′ + hj ′)

∣
∣s
)

+ R|F |C sup
E∈F

E
(∣
∣(M�(E) − Ã�)−1(m + hj ,m

′ + hj ′)
∣
∣s
)

≤ R|F |C(Ae
−a|m−m′−hj ′ | + Ae

−a|m+hj −m′−hj ′ |)

≤ AR|F |C(ea + e2a)e−a|m−m′|,

which gives, for some positive constants B̃ and c̃,

E

(

sup
‖f ‖=‖g‖=1

∫

F

∣
∣〈f,γ�(E)ϕ̃E〉〈γ�(E)ϕ̃E, P̃ (E)P (E)g〉∣∣δ(α(m′ + hj ′) − ṽ − �̃(E))dE

)

≤ B̃e−c̃|m−m′ |. (37)

Substituting (36) and (37) into (34) we obtain the requested inequality (19). �

3 Finite Volume Criteria

We now will show how the results of [2] apply in our case.
We need some constants characterizing the distribution of the coupling constants. Let

s ∈ (0,1). Define

Cs = sup
A∈M2×2(C)

∫ ∫

ρ(du)ρ(dv)
∣
∣
[(

A − diag(u, v)
)−1]

jk

∣
∣s .

In [2], it is shown that Cs is finite. It is also shown that for any s ∈ (0,1/4), if, for a, b, c ∈ C,
we define f (V ) := (V − a)−1, g(V ) := (V − b)(V − c)−1, then

Ds = sup
a,b,c

E(|f (V )|s |g(V )|s)
E(|f (V )|s)E(|g(V )|s) < +∞.

We set C̃s := CsD
2
s .
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In the standard basis of l2(Zd) the operator M(E) + a(E) is given by the matrix
(τm,m′(E))m,m′∈Zd with

τm,m′(E) =

⎧
⎪⎨

⎪⎩

0 m = m′,
bj (E), m = m′ ± hj ,

0, |m − m′| > 1.

(38)

Let s ∈ (0,1/4). For any � ⊂ Z
d denote

T s
m,∂�(E) :=

∑

n∈W

|τm,n(E)|s , m ∈ Z
d , W =

{
Z

d \ �, m ∈ �,

�, m /∈ �.

Furthermore, set

�s
�(E) :=

∑

m∈�

T s
m,∂�(E),

and

k�(m,n;E) := |τm,n(E)|sI1(m,n) + T s
m,∂�(E)T s

n,∂�(E)
C̃s

λs
I2(m,n)

+ T s
m,∂�(E)T s

n,∂�(E)

(
C̃s

λs

)2

�s
�(E)I3(u, v),

where

I1(m,n) =
{

1 m ∈ �,n /∈ �,

0, otherwise,
I2(m,n) =

{
1 m ∈ �,

0, otherwise,

I3(m,n) =
{

1 m ∈ �,n ∈ �,

0, otherwise.

Theorem 3.2 in [2] and the remark thereafter read in our case as follows.

Proposition 8 Take any interval X ⊂ R free of Dirichlet eigenvalues. Assume that there
exist β ∈ (0,1) and s ∈ (0,1/4) such that for all E ∈ X there exists a finite � ⊂ Z

d with
0 ∈ � obeying

sup
W⊂�

∑

(m,n)∈�×(Zd\�)

E
(∣
∣
(
MW(E) − λAW,ω

)−1
(0,m)

∣
∣s
)
k�(m,n;E) ≤ β. (39)

Then, there exist B,c > 0 such that, for any finite � ⊂ Z
d , any m ∈ �, and any E ∈ X, one

has
∑

m′∈�

E
(∣
∣
(
M�(E) − λA�,ω

)−1
(m,m′)

∣
∣s
)
ec|m−m′| ≤ B.

We note that the possibility to choose the constant B independent of E follows
from (3.20) in [2].

It is also important to emphasize that in the sum (39) the coefficients k�(m,n;E) are
non-zero only if simultaneously dist(n,�) = 1 and dist(m,Z

d \ �) = 1.
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For convenience, we formulate Proposition 8 for the special case � = {0}, which will be
used below.

Proposition 9 Take any X ⊂ R free of Dirichlet eigenvalues. Assume that there exists
β ∈ (0,1) and s ∈ (0,1/4) such that for all E ∈ X one has

c(E)

(

1 + c(E)
C̃s

λs

)∫ α+

α−

1

|a(E) + λV |s ρ(dV ) < β, c(E) := 2
d∑

j=1

|bj (E)|s . (40)

Then there exist B,c > 0 such that for any finite � ⊂ Z
d , for any m,m′ ∈ �, and any E ∈ X

there holds

E
(∣
∣
(
M�(E) − λA�,ω

)−1
(m,m′)

∣
∣s
)≤ Be−c|m−m′|.

The condition s ∈ (0,1/4) is needed for the so-called decoupling property to hold
(see [1]). Actually a revision of the proofs in [2] shows that the decoupling property is
not necessary in our case as the operators M(E) do not depend on the random variables,
and one can obtain some finite volume criteria with any power s ∈ (0,1).

The following theorem summarizes all the above localization conditions for quantum
graphs.

Theorem 10 Let X ⊂ R be free of the Dirichlet eigenvalues and have a finite Lebesgue
measure. Assume that the assumptions of Proposition 8 are satisfied, then Hλ,ω has only
pure point spectrum in X.

Proof By Proposition 8, there exist B,c > 0 such that for all finite � ⊂ Z
d and all E ∈ X

one has E|(M�(E) − λA�,ω)−1(m,m′)|s ≤ Be−c|m−m′|. Then, by Proposition 6, one has
E(μ(m,j),(m′,j ′)(X)) ≤ Be−c|m−m′|, B,c > 0. Hence, for any (m, j) the following bound holds

E

(∑

m′∈Zd

d∑

j ′=1

μ(m,j),(m′,j ′)(X)

)

≤ Bd
∑

m′∈Zd

e−c|m′ | < ∞,

and the spectrum of Hλ,ω in X is pure point by Corollary 4. �

We note that there exists a version of finite volume criteria in a similar form for continu-
ous Schrödinger operators [3].

4 Strong Disorder Localization

Here, we are going to exhibit assumptions ensuring that one obtains dense pure point spec-
trum in some regions for sufficiently large constant λ. To guarantee the presence of the dense
pure point spectrum, it is necessary to show the overlapping of the spectrum of Hλ,ω with
the region where the assumptions of Proposition 8 are fulfilled.

Proposition 11 For any E0 ∈ R and any ε > 0 there exists λ0 > 0 such that the spectrum
of Hλ,ω lying in (−∞,E0) but outside the ε-neighborhoods of the Dirichlet eigenvalues is
pure point for all λ > λ0.
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Proof We use the single point criterion, Proposition 9. Denote by X the half-axis (−∞,E0)

without he ε-neighborhoods of the Dirichlet eigenvalues. Due to the asymptotics (13),
one can estimate, for some δ > 0, |ϕj (lj ;E)| ≥ δ > 0 uniformly for E ∈ X. Hence for
E ∈ X one has |bj (E)| ≤ B , |c(E)| ≤ B for some B > 0, and, moreover, due to (13),
bj (E) = O(e−α

√−E), c(E) = O(e−sα
√−E) for some α > 0 as E → −∞.

Pick s ∈ (0,1/4). As the density ρ is bounded, say, ρ ≤ R, one has

∫ α+

α−

∣
∣a(E) + λV

∣
∣−s

ρ(dV ) ≤ R

∫ α+

α−

∣
∣a(E) + λV

∣
∣−s

dV ≤ R

λ

∫ α+/λ−a(E)

α−/λ−a(E)

|V |−sdV

≤ 2R

λs

∣
∣
∣
∣
α+ − α−

λ

∣
∣
∣
∣

1−s

≤ C

λs
.

Therefore,

c(E)

(

1 + c(E)
C̃s

λs

)∫
1

|a(E) + λV |s ρ(dV ) ≤ C̃(E)(λ−s + λ−2s), (41)

where C̃(E) is bounded in X. Hence, the left-hand side of (41) tends to 0 uniformly in X

as λ becomes large. The spectrum if Hλ,ω in any compact subset of X is then pure point by
Theorem 1. �

Proposition 11 does not guarantee that there is some spectrum in the set considered. To
show the presence of a dense point spectrum we use the estimates of Sect. 1.2 to obtain

Theorem 12 Assume that α− < 0. Then, for any ε > 0, there exists λ0 > 0 such that the
spectrum of Hλ,ω in (−∞, inf specH0 − ε) is dense pure point for λ > λ0.

Theorem 13 Let 0 ∈ [α−, α+]. Then, for any E0 > inf specH 0 and any ε > 0, there exists
λ0 > 0 such that the spectrum of Hλ,ω lying in (−∞,E0) but outside the ε-neighborhoods
of the Dirichlet eigenvalues is dense pure point for all λ > λ0.

Both Theorems 12 and 13 are direct consequences of Proposition 11. The discussion of
Sect. 1.2 shows that the intersection of the spectrum of Hλ,ω with the sets considered is
non-empty for large λ.

In Theorems 12 and 13, we only stated the localized spectrum. Clearly by virtue of
Remark 7, we get also exponential decay of the eigenfunctions and dynamical localization.

We were not able to study the effect of the strong disorder in neighborhoods on the
Dirichlet eigenvalues. The reason is that in these neighborhoods the expression a(E) in
the single point criterion, Proposition 9, becomes unbounded; hence, even large λ give no
possibility to control the value of the integral in (40). Moreover, if both the constants α− and
α+ are positive, by the discussion in Sect. 1.2, the whole spectrum is concentrated in these
neighborhoods, so the above theorems do not provide any localization result in this case.
In the next section we fill this gap at least partially and prove localization near the spectral
edges independently of their location.

5 Localization at Band Edges

Here, we are going to show the presence of the dense pure point spectrum at the edges of
the spectrum of Hω .
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The starting point will the following simple observation.

Proposition 14 Let E0 ∈ specHω \ specH 0. If for some ε > 0 one has (E0 − ε,E0) ∩
specHω = ∅ or (E0,E0 + ε) ∩ specHω = ∅, then either inf spec(M(E0) − Aω) = 0 or
sup spec(M(E0) − Aω) = 0. In other words, if E0 /∈ specH 0 is at the border of the spec-
trum of Hω, then 0 is a border of the spectrum of M(E0) − Aω .

Proof As (10) shows, the spectrum of M(E) − Aω is a segment [m−(E),m+(E)] whose
ends m−(E) := inf�M(E) and m+(E) := sup�M(E) depend continuously on E. As
E0 ∈ specHω, one has necessarily 0 ∈ �M(E), i.e. m−(E0)m+(E0) ≤ 0. If one had
m−(E0)m+(E0) < 0, i.e. m−(E0) < 0 and m−(E0) > 0, then the inequality m−(E)m+(E)

< 0 would hold also for E ∈ (E0 − ε,E0 + ε) with some ε > 0. But this would mean that
(E0 − ε,E0 + ε) ⊂ specHω , which contradicts the assumptions. Therefore, the only possi-
bility is m−(E0) · m+(E0) = 0. �

Theorem 15 Let E0 /∈ specH 0 be at the border of the spectrum of Hω . Then the spectrum
of Hω in some neighborhood of E0 is pure point almost surely.

Under the assumptions of Theorem 15, Remark 7 gives also exponential decay of the
eigenfunctions and dynamical localization.

Proof Proposition 14 shows that 0 is an edge of the spectrum of M(E0)−Aω . To be definite,
we consider only the case inf spec(M(E0) − Aω) = 0; the other case can be studied in the
same way. Note that due to the variational principle one has MW(E0) − AW,ω ≥ 0 for any
W ⊂ Z

d .
Let us first do some preparations. For any W ⊂ Z

d and ε > 0 consider the following
subset of :

(ε,W) := {
ω ∈  : inf spec

(
MW(E0) − AW,ω

)≤ ε
}
.

Clearly, by the variational principle one has (ε,W) ⊂ (ε,W ′) if W ⊂ W ′.
Let N (λ) be the integrated density of states corresponding to M(E0) − Aω . Denote

�N := {m ∈ Z
d : maxj |mj | ≤ N}, N ∈ N. It is known [23] that with some C > 0 one has

P
(
(ε,�N)

)≤ CNdN (ε) for any N ≥ 1.

At the same time, one has the Lifshitz asymptotics for N (ε), i.e. there exists ε0 > 0 and
η > 0 such that N (ε) ≤ e−ε−η

, ε ∈ (0, ε0). Indeed, by (38), the Fourier symbol of M(E0)

is of the form
∑d

j=1 bj cos θj − a with bj �= 0, hence, one can apply to M(E0) + Aω the
techniques of [21] to obtain that log | logN (ε)| = − d

2 log ε(1 + o(1)) when ε → 0+.
For any finite W ⊂ Z

d and ε > 0 denote

̃(ε,W) := {
ω ∈  : inf spec

(
MW(E) − AW,ω

)≤ ε for some E, |E − E0| < ε
}
.

Note that the condition inf spec(MW(E) − AW,ω) ≤ ε is equivalent to the existence of a
non-zero ξE ∈ l2(W) with

〈
ξE,

(
MW(E) − AW,ω

)
ξE

〉≤ ε · ‖ξE‖2. (42)

Representing M(E) = M(E0) + (E − E0)B(E), where ‖B(E)‖ ≤ D for some D > 0 in a
neighborhood of E0, one immediately sees that (42) implies 〈ξE, (MW(E0) − AW,ω)ξE〉 ≤
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(D + 1)ε‖ξE‖2, which means inf spec(MW(E0) − AW,ω) ≤ (D + 1)ε. This shows the inclu-
sion ̃(ε,W) ⊂ ((D + 1)ε,W).

With the above preparations we just need to repeat the basic steps from [22, Sect. 2].
It is sufficient to show that there exists a neighborhood X of E0 where the assumptions of
Proposition 8 are satisfied for � = �N with a suitable N .

Let us fix some s ∈ (0,1/4). Consider any W ⊂ �N . As shown above, one has ̃(ε,W) ⊂
((D + 1)ε,W) ⊂ ((D + 1)ε,�N). Subsequently, for ε ∈ (0, ε′) with some ε′ > 0, one
has

P
(
̃(ε,W)

)≤ P
(
((D + 1)ε,�N)

)≤ CNde−ε−η

, η > 0. (43)

For ω /∈ ̃(ε,W) one can use the Combes-Thomas estimates, see e.g. [22, Lemma 6.1],
which gives that for some C ′, r > 0 one has

∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣≤ C ′e−r|m−m′|. (44)

Equation (6.1) in [22] shows that the constants C ′ and r can be chosen independent of W as
in our case inf spec(MW(E) − AW,ω) > ε.

Take any s ′ ∈ (s,1), then for any E with |E − E0| < ε one has also an a priori estimate

E
(∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s

′)≤ Cs′ , (45)

see [2, Lemma 2.1].
Now we have

E
(∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s
)= E

(∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s1ω∈̃(ε,W)

)

+ E
(∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s1ω/∈̃(ε,W)

)
.

Using (44) we obtain easily

E
(∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s1ω/∈̃(ε,W)

)≤ Be−b|m−m′|, B, b > 0.

Using the Hölder inequality, (43) and (45), for some C ′ > 0 and γ > 0, one has

E
(∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s1ω/∈̃(ε,W)

)

≤ (
E
∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s
)s/s′

P(̃(ε,W))(s′−s)/s

≤ C ′Nde−ε−γ

.

Finally,

E
∣
∣
(
MW(E) − AW,ω

)−1
(m,m′)

∣
∣s ≤ Be−b|m−m′| + C ′Nde−ε−γ

. (46)

Now let us estimate the sum (39). We emphasize again that the coefficients k�N
(m,n;E)

in this sum are non-zero only if simultaneously dist(n,�N) = 1 and dist(m,Z
d \ �N) = 1.

Moreover, the non-zero terms are uniformly bounded in a neighborhood of E0, k�N
(m,n;E)
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≤ K , K > 0. Therefore, using (46),

∑

m∈�N

n∈Z
d\�N

E
(∣
∣
(
MW(E) − λAW,ω

)−1
(0,m)

∣
∣s
)
k�(m,n;E)

≤ K
∑

m∈�N

dist(m,Zd\�N )=1
n/∈�N

dist(n,�N )=1

(
Be−b|m| + C ′Nde−ε−γ )

≤ K ′N2d
(
Be−bN + C ′Nde−ε−γ )

.

Now choosing, for example, N ∼ ε−1 one can make the sum as small as needed for suffi-
ciently small ε. The spectrum of Hω near E0 is then pure point by Theorem 1. �

Acknowledgements KP was supported by the research fellowship of the Deutsche Forschungsgemein-
schaft (PA 1555/1-1) and by the joint German-New Zealand project NZL 05/001 funded by the International
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Appendix A: Proofs of Propositions 5 and 3

In this subsection, we prove some auxiliary results on the finite volume approximation for
HA defined in Sect. 2.

Proof of Proposition 5 To prove the convergence, we will use the following variant of The-
orem VIII.1.5 from [18]: Let Tn, T be self-adjoint operators. Assume that there exists a
domain D of essential self-adjointness (or a core) for T such that every function f from D

belongs to domTm for m sufficiently large and Tnf → Tf for any such f . Assume that, for
at least one non-real z, the sequence ‖(Tn − z)−1‖ is bounded, then Tn converges to T in the
strong resolvent sense.

In our case, take as D the set of the functions f ∈ domHA having a compact support.
Clearly, any such f lies in domH

�n

A for n sufficiently large, and H�n
α f just coincides with

HAf for such n. Let us show that D is a domain of essential self-adjointness for HA.
Choose functions uj ∈ C∞[0, lj ] such that uj is 1 in a neighborhood of 0 and is 0 in a

neighborhood of lj . Take an arbitrary f ∈ domHA. For M ∈ N denote f M := (f M
m,j ) with

f M
m,j (t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fm,j (t), m ∈ �M−1,

uj (t)fm,j (t), (m, j) = m → m′, m ∈ �M \ �M−1,m
′ /∈ �M,

uj (lj − t)fm,j (t), (m, j) = m → m′, m′ ∈ �M \ �M−1,m /∈ �M,

0, otherwise.

Clear, f M ∈ D and f M →
M→+∞

f . Note that HA(f M − f ) = (FM
m,j ) with

FM
m,j = u′′

j fm,j + 2u′
j f

′
m,j + (uj − 1)

(− f ′′
m,j + Ujfm,j

)
,

(m, j) = m → m′, m ∈ �M \ �M−1,m
′ /∈ �M,

FM
m,j = u′′

j (lj − ·)fm,j − 2u′
j (lj − ·)f ′

m,j + (
uj (lj − ·) − 1

)(− f ′′
m,j + Ujfm,j

)
,

(m, j) = m → m′, m′ ∈ �M \ �M−1,m /∈ �M,
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and all other components FM
m,j equal to 0. As (fm,j ) ∈ H, (f ′

m,j ) ∈ H and
(−f ′′

m,j + Ujfm,j ) ∈ H, one has HA(f M − f ) →
M→∞

0. This shows that HA is essentially

self-adjoint on D.
To conclude the proof of the strong resolvent convergence it remains to show that the

norms ‖(H�n
α − E)−1‖ are uniformly bounded for at least one non-real E. Take an arbitrary

E with E �= 0. By (6) one has M(E)/E ≥ c for some c > 0. In particular, for any n one
has

∣
∣
〈(
��n(M(E) − A)��n

)
��nξ,��nξ

〉∣
∣= ∣

∣
〈
(M�n(E) − A�n)��nξ,��nξ

〉∣
∣≥ c‖��nξ‖2,

which means that M�n(E) − A�n has a bounded inverse, and that ‖(M�n(E) − A�n)
−1‖

≤ c−1. Now it follows from (17) that the norms ‖(H�n
α − E)−1‖ are uniformly bounded for

any non-real E. �

Proof of Proposition 3 We note first that T is an integral operator whose integral kernel is

T
(
(m, j, t), (m′, j ′, t ′)

)=
{

GA((m, j, t), (m′, j ′, t ′)), m ∈ �,

0, otherwise.

Hence

‖T ‖2
HS =

∑

m∈�

∑

m′∈Zd

d∑

j,j ′=1

∫ lj

0

∫ lj ′

0

∣
∣GA

(
(m, j, t), (m′, j ′, t ′)

)∣
∣2 dt ′ dt.

Using the explicit form (8) for GA and the bounds ‖ϕj‖,‖φj‖ ≤ C (with C independent
of j ) we obtain

‖T ‖2
HS ≤ 2

(
d∑

j=1

‖Gj‖2
HS

)

|�| + C ′ ∑

m∈�̃

∑

m′∈Zd

∣
∣(M(E) − A)−1(m,m′)

∣
∣2 (47)

with some C ′ > 0, where �̃ := {m ∈ Z
d : infm′∈� |m − m′|2 ≤ 2}. Clearly, due to (9) the

Hilbert-Schmidt norms of Gj are finite. Furthermore, as (M(E)−A)−1 is bounded for non-
real E, one has

∑

m′∈Zd

∣
∣(M(E) − A)−1(m,m′)

∣
∣2 < ∞

for any m ∈ Z
d by the Riesz theorem. Hence, due to the finiteness of � (and of �̃), the sum

on the right-hand side of (47) is finite. �
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